Kajian Literatur Perbandingan Teknik Kecerdasan Komputasional : Jaringan Syaraf Tiruan Vs. Algoritma Evolusioner

Authors

  • Rizkie Maulana Universitas Malikussaleh
  • Nurdin Nurdin Universitas Malikussaleh

DOI:

https://doi.org/10.59059/mutiara.v3i3.2366

Keywords:

Algorithms, Artificial Neural Networks, Computational Intelligence, Evolutionary Optimization, Technique Comparison

Abstract

The rapid development in the field of Computational Intelligence (CI) has driven the use of various techniques to solve complex problems. Two main approaches that are often compared within CI are Artificial Neural Networks (ANN) and Evolutionary Algorithms (EA), each with its own strengths and limitations. Artificial Neural Networks, inspired by the structure of the human brain, operate through interconnected layers of neurons and have proven effective in pattern recognition and non-linear data modeling. Meanwhile, Evolutionary Algorithms, inspired by the process of biological evolution, are used for global solution searches in complex optimization problems without requiring mathematical derivatives of the objective function. In this study, we compare these two techniques based on architecture, model complexity, performance, and their applications across various domains. Additionally, we explore the potential of integrating both techniques into a hybrid approach that can optimize performance on more complex problems. The findings of this study indicate that combining ANN and EA, such as in neuroevolution approaches, provides more adaptive and efficient solutions compared to using each technique independently. This study offers insights into the use of ANN and EA and their applications in image processing, industrial optimization, and data-driven intelligent systems.

References

ADF, A. (2019). Annual Report Annual Report. Fresenius.Com, December, 2–2.

Bäck, T. H. W., Kononova, A. V., van Stein, B., Wang, H., Antonov, K. A., Kalkreuth, R. T., de Nobel, J., Vermetten, D., de Winter, R., & Ye, F. (2023). Evolutionary Algorithms for Parameter Optimization—Thirty Years Later. Evolutionary Computation, 31(2), 81–122. https://doi.org/10.1162/evco_a_00325

Cicirello, V. A. (2024). Evolutionary Computation: Theories, Techniques, and Applications. Applied Sciences, 14(6), 2542. https://doi.org/10.3390/app14062542

Courville, I. G. and Y. B. and A. (2016). Deep learning 简介 一 、 什么是 Deep Learning ?. Nature, 29(7553), 1–73. http://deeplearning.net/

Das, S., & Suganthan, P. N. (2011). Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31. https://doi.org/10.1109/TEVC.2010.2059031

Daun, M., Grubb, A. M., Stenkova, V., & Tenbergen, B. (2023). A systematic literature review of requirements engineering education. In Requirements Engineering (Vol. 28, Issue 2). Springer London. https://doi.org/10.1007/s00766-022-00381-9

Ding, S., Li, H., Su, C., Yu, J., & Jin, F. (2013). Evolutionary artificial neural networks: a review. Artificial Intelligence Review, 39(3), 251–260. https://doi.org/10.1007/s10462-011-9270-6

Gavrilescu, M., Floria, S.-A., Leon, F., & Curteanu, S. (2022). A Hybrid Competitive Evolutionary Neural Network Optimization Algorithm for a Regression Problem in Chemical Engineering. Mathematics, 10(19), 3581. https://doi.org/10.3390/math10193581

Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning techniques for autonomous driving. Journal of Field Robotics, 37(3), 362–386. https://doi.org/10.1002/rob.21918

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Li, X., Pu, R., & Yuan, Y. (2022). Deep Neural Networks for Stock Market Prediction. 2022 International Conference on Computers, Information Processing and Advanced Education (CIPAE), 214–218. https://doi.org/10.1109/CIPAE55637.2022.00053

Liu, J., Sarker, R., Elsayed, S., Essam, D., & Siswanto, N. (2024). Large-scale evolutionary optimization: A review and comparative study. Swarm and Evolutionary Computation, 85, 101466. https://doi.org/10.1016/j.swevo.2023.101466

López-Vázquez, G., Espinal, A., Ornelas-Rodríguez, M., Soria-Alcaraz, J. A., Rojas-Domínguez, A., Puga, H., Carpio, J. M., & Rostro-González, H. (2020). Comparing Evolutionary Artificial Neural Networks from Second and Third Generations for Solving Supervised Classification Problems (pp. 615–628). https://doi.org/10.1007/978-3-030-35445-9_42

Mirza, R., Taufiq, T., & Nurdin, N. (2022). Pemantau pH Air Tambak Udang Vaname Berbasis Internet of Things dengan Antarmuka Bot Telegram. Medika Teknika : Jurnal Teknik Elektromedik Indonesia, 4(1), 63–71. https://doi.org/10.18196/mt.v4i1.15720

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Nabipour, M., Nayyeri, P., Jabani, H., Mosavi, A., Salwana, E., & S., S. (2020). Deep Learning for Stock Market Prediction. Entropy, 22(8), 840. https://doi.org/10.3390/e22080840

Nair, B. B., Sai, S. G., Naveen, A. N., Lakshmi, A., Venkatesh, G. S., & Mohandas, V. P. (2011). A GA-artificial neural network hybrid system for financial time series forecasting. Communications in Computer and Information Science, 147 CCIS(November 2021), 499–506. https://doi.org/10.1007/978-3-642-20573-6_91

Patil, R. S., Jadhav, S. P., & Patil, M. D. (2024). Review of Intelligent and Nature-Inspired Algorithms-Based Methods for Tuning PID Controllers in Industrial Applications. Journal of Robotics and Control (JRC), 5(2), 336–358. https://doi.org/10.18196/jrc.v5i2.20850

Puspasari, H. W., & Pawitaningtyas, I. (2020). Masalah Kesehatan Ibu Dan Anak Pada Pernikahan Usia Dini Di Beberapa Etnis Indonesia; Dampak Dan Pencegahannya. Buletin Penelitian Sistem Kesehatan, 23(4), 275–283. https://doi.org/10.22435/hsr.v23i4.3672

Reddy, M. J., & Kumar, D. N. (2006). Multi-Objective Optimization using Evolutionary Algorithms. Water Resources Management, 20(6), 861–878.

Roheen Qamar, & Baqar Ali Zardari. (2023). Artificial Neural Networks: An Overview. Mesopotamian Journal of Computer Science, 2023, 124–133. https://doi.org/10.58496/MJCSC/2023/015

Serey, J., Alfaro, M., Fuertes, G., Vargas, M., Durán, C., Ternero, R., Rivera, R., & Sabattin, J. (2023). Pattern Recognition and Deep Learning Technologies, Enablers of Industry 4.0, and Their Role in Engineering Research. Symmetry, 15(2), 535. https://doi.org/10.3390/sym15020535

Simon Haykin. (2018). Neural Networks and Learning Machines. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Vols. 1–3). https://doi.org/10.1016/B978-0-12-809633-8.20339-7

Srikumar, A., & Pande, S. D. (2023). Comparative analysis of various Evolutionary Algorithms: Past three decades. ICST Transactions on Scalable Information Systems. https://doi.org/10.4108/eetsis.4356

Staffs, K. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical Report, Ver. 2.3 EBSE Technical Report. EBSE, January 2007, 1–57.

Taufik, T., Nurdin, N., & Taufiq, T. (2023). Penerapan Smart Wastafel Berbasis Internet of Things dengan Menggunakan Aplikasi Blynk dan Cloud. Medika Teknika : Jurnal Teknik Elektromedik Indonesia, 5(1), 67–78. https://doi.org/10.18196/mt.v5i1.19576

Yaghoubi, E., Yaghoubi, E., Khamees, A., & Vakili, A. H. (2024). A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering. Neural Computing and Applications, 36(21), 12655–12699. https://doi.org/10.1007/s00521-024-09893-7

Downloads

Published

2025-05-23

How to Cite

Rizkie Maulana, & Nurdin Nurdin. (2025). Kajian Literatur Perbandingan Teknik Kecerdasan Komputasional : Jaringan Syaraf Tiruan Vs. Algoritma Evolusioner. Mutiara : Jurnal Penelitian Dan Karya Ilmiah, 3(3), 91–100. https://doi.org/10.59059/mutiara.v3i3.2366

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.