Penerapan Metode K-Means Clustering pada Hasil Produksi Beras di Wilayah Sumatera Utara
DOI:
https://doi.org/10.59059/mutiara.v1i6.749Keywords:
K-Means Clustering, Rice Production, North Sumatra, Data Analysis, GroupAbstract
This research aims to apply the method K-Means Clustering on rice production results in the region North Sumatra. K-Means Clustering is a data analysis technique that is useful for grouping data into several groups based on similar characteristics. This research uses rice production data from several districts/cities in North Sumatra as samples. The K Means method is used to group these regions into several clusters based on rice production they. The research results show that the K Means Clustering method can be used for identification rice production patterns in the North Sumatra region. The hope is, research results can be a valuable contribution, provide recommendations, and support initiatives for the North Sumatra provincial government in improving rice production throughout the region, with the aim of ensuring a more stable food supply for the community.
References
N. Suryani, R. Abdurrachim and N. Alindah, "Analisis Kandungan Karbohidrat, Serat Dan Indeks Glikemik Pada Hasil Olahan Beras Siam Unus Sebagai Alternatif Makanan Selingan Penderita Diabetes Mellitus," Jurkessia, vol. VII, no. 1, pp. 1-9, 2016.
C. J. Silalahi, A. Situmorang and J. F. Naibaho, "Implementasi Metode K-Means Clustering Untuk Memetakan Daerah Potensial Penghasil Padi di Provinsi Sumatera Utara," Jurnal Ilmiah Teknik Informatika, vol. II, no. 2, pp. 49-57, 2022.
Mardliyah, S., Fajar, M. Y., & Badruzzaman, F. H. (2022). Penggunaan Forecasting dan Goal Programming dalam Optimasi Perencanaan Produksi Beras. Bandung Conference Series: Mathematics, 2(1), 83–93.
Zaeroni, R., & Rustariyuni, S. (2016). Pengaruh Produksi Beras, Konsumsi Beras Dan Cadangan Devisa Terhadap Impor Beras Di Indonesia. E-Jurnal Ekonomi Pembangunan Universitas Udayana, 5(9), 993–1010.
N. A. R. I. &. Z. A. Zulfa, "Jurnal Teknologi Dan Sistem Informasi(JTSI)," Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. , vol. 2, pp. 100 - 108, 2021.
J. *. S. S. Miharja, "Proceeding SENDIU," Penerapan Data Mining Penerimaan Karyawan Menggunakan Metode Naive bayes Classifier, pp. 579-583, 2021.
K. S. H. K. A. R. P. A. N. O. F. A. &. A. Atros, MAJALAH ILMIAH METHODA, 2022.
T. Tendean and W. Purba, "Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma KMeans," Jurnal Sains dan Teknologi, vol. I, no. 2, pp. 5-11, 2020